
Inhomogeneous linear differential equations
Suppose we are given a linear differential equation (LDE) of order N or,
more generally, the following linear system of first order differential equations

ẋ + Ax = b x(t0) = x0 (1)

where x = (x1, x2, ..xN )t is the column vector of unknown functions of t, A is
a N ×N matrix (possibly t dependent), b = (b1, b2..bN )t is a vector of known
functions and x0 is an initial condition.

Suppose we have solved the homogenous problem

ẋ + Ax = 0

and found theN (linearly independent) solution vectors guaranteeed by Cauchy’s
initial-value theorem, y1,y2, ..yN

ẏi + Ayi = 0 i = 1, 2, ..N

that we arrange as columns of a matrix Y = Y(t) in such a way that

Ẏ + AY = 0

holds.
We are now in a position to find the particular solution of the non-homogeneous

problem above. To this end, consider the following change of variables

x = Yz

in the non-homogeneous problem. Since it holds

b =
(
Ẏ + AY

)
z + Yż ≡ Yż

the DE is readily solved for z to give

z(t) = z(t0) +

∫ t

t0

Y−1(t′)b(t′)dt′

Here Y(t) is non-singular (for any t) since it is made up of linearly independent
column vectors. Finally, we find for x

x(t) = Y(t)z(t0) +

∫ t

t0

Y(t)Y−1(t′)b(t′)dt′

where
x(t0) = Y(t0)z(t0) ≡ x0

hence

x(t) = Y(t)Y−1(t0)x0 +

∫ t

t0

Y(t)Y−1(t′)b(t′)dt′

1



We have thus found the solution in the form

x(t) = Π(t, t0)x0 +

∫ t

t0

Π(t, t′)b(t′)dt′ (2)

where
Π(t, t′) = Y(t)Y−1(t′) (3)

is the fundamental propagator of the LDE. This function propagates a give
state at time t′ to a time t, that is x(t) = Π(t, t′)x′is the solution of the homo-
geneous LDE that reduces to x′ when t→ t′.

The general solution of Eq. 2 is given at any time t as superposition of a
’freely’ evolving state

x0(t) ≡ Π(t, t0)x0

and a ’forced’ one
x̄(t, t′) = Π(t, t′)b(t′)

namely,

x(t) = x0(t) +

∫ t

t0

x̄(t, t′)dt′

This latter term admits the following simple interpretation. Let us consider for
definiteness t ≥ t0 and the following ’driving force’

b(t) = Bδ(t− t̄)

where t̄ ∈ (t0, t). Clearly, under this condition the LDE is homogeneous for both
t < t̄ and t > t̄ and thus its solution is of the general form x(t) = Π(t, t′)x(t′).
For t < t̄ the initial condition is just x0 and thus x(t) ≡ x0(t) (as defined
above) holds up to a value of t which is infinitesimally smaller than t̄, where the
solution takes the value x̄−. For t = t̄ the solution undergoes to a sudden jump
to x̄+ due to the ’kick’ b(t) and then for t > t̄ it propagates freely according
to x(t) = Π(t, t̄)x̄+. The state right after the kick, x̄+, can be obtained by the
integral form of the LDE

x(t) = x̄− −
∫ t

t̄

A(t′)x(t′)dt′ +

∫ t

t̄

δ(t′ − t̄)Bdt′

by taking the limit t→ t̄+ and reads

x̄+ = x̄− + B

Hence for t > t̄

x(t) = Π(t, t̄)x̄− + Π(t, t̄)B ≡ Π(t, t0)x0 + x̄(t, t̄)

as discussed above.
Formally, for several (physical) reasons it may be convenient to separate the

causal (t > t0) from the non-causal (t < t0) evolution (this is helpful when t
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is a sort of time). This may be accomplished by defining the retarted (GR)
and the advanced (GA) Green’s functions

GR(t, t′) = Θ(t− t′)Π(t, t′) GA(t, t′) = Θ(t− t′)Π(t, t′)

where Θ(x) is the Heaviside function, Θ(x) = 1 for x ≥ 0 and Θ(x) = 0
otherwise. These functions can be used to re-write the general solution above
as

x(t) = GR(t, t0)x0 +

∫ +∞

t0

GR(t, t′)b(t′)dt′ for t ≥ t0 (4)

and

x(t) = GA(t, t0)x0 +

∫ −∞
t0

GA(t, t′)b(t′)dt′ for t ≤ t0 (5)

where the upper limit of the integration has been change to +∞ (−∞) since
Θ(t−t′) (Θ(t′−t)) guarantees that the integrand vanishes for t′ > t (t′ < t). The
Green’s functions satisfy simple LDEs that can be obtained by direct derivation.
For instance,

∂GR(t, t′)

∂t
= δ(t− t′)Π(t, t′) + Θ(t− t′)∂Π(t, t′)

∂t
≡ δ(t− t′)1−AGR(t, t′)

i.e.,
∂GR(t, t′)

∂t
+ AGR(t, t′) = δ(t− t′)1 (6)

where we have used Π(t′, t′) = 1 and the fundamental property of the propaga-
tor

∂Π(t, t′)

∂t
+ AΠ(t, t′) = 0

Notice that GR is discontinuous since it undergoes a sudden jump for equal
values of its arguments

GR(t, t′) ≡ 0 for t < t′ and lim
t→t′+

GR(t, t′) = 1

Importantly, defining GR by means of Eq. 6 it is easy to verify that1

x(t) = GR(t, t−0 )x0 +

∫ +∞

t0

GR(t, t′)b(t′)dt′

is a solution of the LDE of Eq. 1 for any t ≥ t0, and similarly for GA and t ≤ t0.
Indeed, upon defining Dt = d

dt + A, we have

DtG
R(t, t−0 ) ≡ 0 for t ≥ t0

1t−0 is here introduced to properly handle the limit t → t0.
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and

Dt

∫ +∞

t0

GR(t, t′)b(t′)dt′ =

∫ +∞

t0

DtG
R(t, t′)b(t′)dt′ =

∫ +∞

t0

δ(t−t′)b(t′)dt′ = b(t)

where Dt could be moved within the integral thanks to the causality condition
(differently from Eq. 2). On the other hand, it also holds

lim
t→t0

GR(t, t−0 )x0 = x0

thereby proving that the above solution satisfies the desired initial condition.

Homogeneous linear differential equation
In view of the above, unless we are brave enough to directly seek the Green’s
function of the problem, it is clear that the simplest strategy to solve the LDE
is first to find the solutions of the homogeneous differential equation

ẋ + Ax = 0 x(t0) = x0

and then build up the fundamental propagator, Eq. 3. There is no general
strategy for this, unless A is constant, i.e. it does not depend on t. We start
considering this case, and the rather common situation in which A is diagonaliz-
able2. Under such circumstances, any vector x can be written as a superposition
of the eigenvectors uk of the matrix A and thus we can solve separately for each
of them and later combine the eigen-solutions. Let us suppose then x0 = uk
and seek for a solution of the form

xk(t) = ck(t)uk

The equation reads as
(ċk(t) + αkck(t))uk = 0

where αk is the corresponding eigenvalue, and its solution follows simply as

ck(t) = exp(−αk(t− t0))

In general, upon noticing that for arbitray x0 it holds

x0 =
∑
k

uk 〈ũk,x0〉

2Remember that A is said diagonalizable if there exist a non-singular matrix X such that
X−1AX = AD where AD is a diagonal matrix. Since this amounts to AX = XAD, X is the
matrix of the eigenvectors of A (the columns of X) and these are guaranteed to be linearly
indepedent (since X is non-singular). In other words, the eigenvectors of a diagonalizable
matrix A form a basis of the vector space on which A operates. Non-diagonalizable matrices
are ’rare’ — they have zero measure in a certain sense — and need to be handled case by
case. A necessary condition for A to be non-diagonalizable is the existence of degenerate
eigenvectors, i.e. of eigenspaces of dimension > 1.
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where {ũk} is the dual basis of {uk}, the solution for an arbitrary x0 is readily
found to be

x(t) =
∑
k

e−αk(t−t0)uk 〈ũk,x0〉

The set of N linearly independent solutions can thus be obtained by choosing
N linearly independent initial states, e.g., the set of canonical vectors x0 =
{e1, e2..eN} or, simpler, the set of eigenvectors uk. In the latter case we directly
obtain

Y(t) = Xdiag
{
e−α1t, e−α2t..e−αN t

}
where X is matrix of the (column) eigenvectors, and

Π(t, t′) = Xdiag
{
e−α1(t−t′), e−α2(t−t′)..e−αN (t−t′)

}
X−1

Equivalently,
Π(t, t′) = exp (−A(t− t′)) (7)

where use has been made of the definition of a function of a (diagonalizable)
matrix

f(A) = Xf(AD)X−1

the function of a diagonal matrix being defined simply as

f(AD) = diag {f(α1), f(α2)..f(αN )}

This expression can also be seen as the result of the direct integration of the
equation

∂Π(t, t0)

∂t
+ AΠ(t, t0) = 0 Π(t, t0) = 1

provided the exp function is defined as above.
When A is t-dependent the method sketched above cannot be applied, and

no simple exp function can be defined that solves the LDE. To proceed, we
re-write the equation in integral form

Π(t, t0) = 1−
∫ t

t0

A(t′)Π(t′, t0)dt′

and solve it by iteration

Π(t, t0) = 1−
∫ t

t0

dt1A(t1) +

∫ t

t0

dt1

∫ t1

t0

dt2A(t1)A(t2)+

..(−1)n
∫
t≥t1≥..≥tn≥t0

dt1..dtnA(t1)..A(tn) + ..

Equivalently, we can write

Π(t, t0) =

∞∑
n=0

(−1)n

n!

∫
[t0,t]n

dt1..dtnT (A(t1)..A(tn))
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where T is a t−ordering operator defined as

T (A(t1)..A(tn)) = A(ts1)..A(tsn)

(ts1 , ts2 , ..tsn) being the ordered permutation of the original t values, ts1 ≥
ts2 ≥ ..ts1 . This expression represents a formal solution for the fundamental
propagator of the LDE. Though rarely useful in practice it represents a very
useful starting point for investigating the LDE and devising approximations.
Clearly, it reduces to Eq. 7 when A is t-independent.

Before concluding, it is worth commenting on a common strategy to solve a
homogeneuos, constant-coefficient linear equation of order N , that is with the
help of the characteristic polynomial, since this method is closely related to
(though slighlty less general than) the above ’spectral’ method. To show this
let us consider the following LDE

x(N) + a1x
(N−1) + ..aN−1x

(1) + aNx
(0) = 0

where x(k) denotes the kth derivative of x. The charateristic equation is obtained
by seeking solutions of the form x(t) ∝ exp(βt) and reads as

βN + a1β
N−1 + ..aN−1β + aN = qN (β) = 0

where qN (β) =
∑N
k aN−kβ

k is the characteristic polynomial of the homoge-
neous differential equation. The solutions of this algebraic equation provide the
exponents that define the solutions of the LDE. They are N in number if the
zeros of qN (β) are simple, otherwise there remain a numer of linearly indipen-
dent solutions that need to be found by other means. To connect this settings
with our previous findings we make the standard replacement

x =
(
x(0), x(1), ..x(N−1)

)
and rewrite the LDE in the standard form

ẋ + Ax = 0

with

A =


0 −1

0 −1
0 −1 ..
.. .. −1

aN aN−1 .. a2 a1


The relevant eigenvalue problem reads as

pN (α) = det (α1−A) = det


α +1

α +1
α +1 ..
.. .. +1

−aN −aN−1 .. −a2 α− a1


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where the determinant on the right hand side can be expanded as

pN (α) = αpN−1(α)+(−1)N+1(−aN ) det


+1 0
α +1 0

α +1 0 ..
.. .. 0
.. α +1

 ≡ αpN−1(α)+(−1)NaN

Here the polynomial pN−1(α) reads similar to pN (α) as

pN−1(α) = det


α +1

α +1
α +1 ..
.. .. +1

−aN−1 −aN−2 .. −a2 α− a1


and can be expanded similarly to above to give

pN (α) = α
(
αpN−1(α) + (−1)N−1aN−1

)
+ (−1)NaN = ... =

=

N∑
k=0

(−1)N−kaN−kα
k (with α0 := 1)

Thus, qN (β) ≡ (−1)NpN (−β) and the eigenvalues A are just the opposite of
the roots of the characteristic polynomial qN (consistently with the minus sign
in Eq. 7).

With the same token, it is not hard to show that x = (1, β, β2, ..βN−1)t

is eigenvector of A with eigenvalue −β when β is a root of the characteristic
polynomial

βN + a1β
N−1 + ..aN−1β + aN ≡ qN (β) = 0

since in that case a1β
N−1+..βaN−1+aN ≡ −βN solves the non-trivial condition

in the N th row of the eigenvalue problem, i.e.,
0 −1

0 −1
0 −1 ..
.. .. −1

aN aN−1 .. a2 a1




1
β
β2

..
βN−1

 =


−β
−β2

−β3

..
−βN

 ≡ −β


1
β
β2

..
βN−1


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